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under a periodically modulated oscillation 
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It has been found theoretically and experimentally that a non-propagating soliton in 
a small rectangular water tank manifests dynamic behaviour when subjected to a 
modulated oscillation. A modification of the cubic Schrodinger equation was 
generalized for this case and analysed by the inverse-scattering perturbation method. 
The problem was reduced to a lower-dimensional one, i.e. to a pair of first-order 
ordinary differential equations for the amplitude and phase of the soliton, which were 
solved numerically. It was found that the soliton executes multi-periodic and chaotic 
motions under the periodically modulated oscillation. Corresponding experiments 
were carried out and both qualitative and quantitative agreement was obtained for the 
phenomena predicted and the parameter ranges in which they occur. 

1. Introduction 
The non-propagating soliton, i.e. a longitudinal soliton-type modulation of a 

parametrically and resonantly excited standing free-surface cross-wave, was first 
observed by Wu, Keolian & Rudnick (1984) in a small narrow rectangular water tank 
subjected to a simple harmonic vertical oscillation. Larraza & Putterman (1984) and 
Miles (1 984) investigated it theoretically and both arrived at the cubic Schrodinger 
equation. The theory of Miles is briefly stated as follows. As the driving frequency 2w 
is close to twice the natural frequency w1 of the lowest cross-mode, i.e. (0,l) mode, a 
cross-wave of frequency w with slowly longitudinally varying amplitude is induced. The 
complex amplitude of the wave satisfies a cubic Schrodinger equation modified by 
incorporating the weak damping and the constant parametric excitation, which admits 
a stable soliton solution that describes the observation of the wave by Wu et al. (1984). 
For recent review of parametrically excited waves and a progress report on the non- 
propagating soliton, we refer the reader to Miles & Henderson (1990), Laedke & 
Spatschek (1991), Guthart & Wu (1991) and Wei et al. (1990). 

In a different context, a very interesting and enlightening review of the dynamic 
behaviour of waves and solitons was given by Abdullaev (1989). Mathematically 
integrable systems like solitons usually differ from actual physical systems where 
certain effects such as dissipation, parametric excitation or external forcing are 
unavoidable. Then the equations describing the latter may not be integrable. However, 
if these disturbances are small, the spatial soliton-type solutions are still expected to 
exist with their asymptotic states probably being no longer stationary, but dynamic, 
e.g. there is bifurcation or chaos. The asymptotic method of perturbation theory, in 
particular that based on the inverse-scattering transform, can be applied to the 
problem. Then the soliton solution can be carried out and the problem is reduced to 
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a finite-dimensional one in terms of characteristic soliton parameters, e.g. amplitude, 
phase and speed. This can be analysed more simply with existing analytical and 
numerical techniques. Chaotic motions of some kinds of solitons in special cases have 
been found theoretically. 

In this paper, we consider an analogous case to Miles (1984), except that the water 
tank is subjected vertically to a periodically amplitude-modulated harmonic oscillation 
instead of a pure simple harmonic oscillation, and investigate the dynamic behaviour 
of the non-propagating soliton theoretically as well as experimentally. The cubic 
Schrodinger equation satisfied by the complex amplitude of the longitudinally 
modulated dominant cross-wave with weak damping and parametric excitation in 
Miles (1984) can be shown to hold also for the slowly time-varying parametric 
excitation and is generalized for this case simply by permitting the excitation to vary 
with time. This equation also possesses spatial soliton-type solutions, whose 
characteristic parameters, namely amplitude and phase, vary with time however, 
responding to the time-varying excitation. Employing the inverse-scattering per- 
turbation technique (Lamb 1980) to the disturbed cubic Schrodinger equation since the 
damping and excitation are relatively small, we obtain a pair of first-order ordinary 
differential equations for the amplitude and phase of the soliton. The procedure 
reduces the task of investigating the infinite-dimensional problem to that of the two- 
dimensional one. Numerical integration of the equations is carried out with a fourth- 
order Runge-Kutta algorithm and solutions representing chaos and multi-periodic 
bifurcations are obtained in certain parameter ranges. We present the results as phase 
portraits and PoincarC maps. We also report results of experiments, in which the 
phenomena of chaotic and multi-periodic amplitude-modulated motion of the soliton 
were observed. The dynamic characteristics of motion of the soliton are identified from 
the frequency spectra of wave elevations. The theoretical model not only predicts the 
basic phenomena of chaos and bifurcation of the soliton qualitatively similar in nature 
to the experiment, but also attains quantitative agreement with respect to parameter 
ranges of occurrence of chaos and bifurcation when the experimentally determined 
damping ratio is used in the calculation. 

2. Formulation 
We consider in a small narrow rectangular tank of length 1 and breadth b filled with 

water to quiescent depth d, which is subjected vertically to a slowly amplitude- 
modulated harmonic oscillation of circular frequency 2w, such that the vertical 
displacement 2 is given by 

2 = a(~)cos2wt, U(T) = a,+a, sin&, (1) 

where 7 = e'wt, 52 = 27cF/c2w, F is modulation frequency and c is a small parameter. A 
Cartesian coordinate system Oxyz fixed in the tank is set with origin 0 located on one 
of sidewalls, the plane Oxy on the relatively quiet free surface, x the longitudinal 
direction, y the transverse and z positive upward. When half the basic driving 
frequency 2w is near the natural frequency of the lowest cross-mode, a cross-wave at 
frequency w with a longitudinally and slowly time-varying amplitude is induced. We 
extend the theories of Miles (1984) and Larraza & Putterman (1984) to describe this 
problem in the following. The cubic nonlinear Schrodinger equation for the complex 
amplitude of the dominant cross-wave is generalized as 

iu, + pu + uxx + 21~~124 + iclu + y(7) u* = 0, (2) 
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where X = sx/K+, u = (Ni/2/2) A, (3) 

w1 = (gkT);, k = n/b,  T = tanh(kd), (5) 

1 k2 
4k2 T 64T4 K =  ---(T+kdsech2kd), N = -(6T6-5T4+ 1 6 ~ 2 - 9 ) ~  

the asterisk denotes a complex conjugate, A is the amplitude of the dominant lowest 
cross-mode, w1 is the natural frequency of the mode, $is the damping ratio, equivalent 
to 6 in Miles (1984), and g is the gravitational acceleration. The term yu* is now 
permitted to vary slowly with time in consequence of the amplitude modulation of the 
driving oscillation. The linear damping ratio is here determined by matching theoretical 
stability analysis to experimental data as shown in the Appendix. This value is much 
higher than that calculated for a tank with hydrophilic walls according to Appendix C 
in Miles (1984). The nonlinear water surface elevation < in this case is then given by 

(7) 

(8) 

6 = ,& e-iwt + 62< e-i2wt 
2, + C.C. + O(e3), 

W 2 A 2  

8gT4 
<,, =;Acosky, <,, = ; A , c o s ~ ~ ~ ,  A, = --(P-3). 

In the absence of any amplitude modulation of the driving oscillation, i.e. where y is 
constant, via the transformation 

k2 B 
X, N-t-A, K + -  

k 2k( TK); 8 T2 4k2T’ 
1 

r, X +  
2TNi 

U + -  (9) 

equation (2) becomes identical to (4.4) in Miles (1984), which admits an asymptotically 
stable non-propagating soliton solution. 

This disturbed cubic Schrodinger equation (2) with (7)  and (8) can also be derived 
by another approach, namely multiple-scale perturbation method, which was used in 
Larraza & Putterman (1984). In order to emphasize the main points only, here we omit 
the details of the derivation. 

As the parametric excitation varies with time, we expect the soliton still to exist, but 
to have dynamic behaviour. We can use the inverse-scattering perturbation technique 
(Lamb 1980) to analyse the problem if the terms yu* and iau are small in some sense. 
First, we generalize the result of the evolution of the single soliton of (9.3.1), (9.4.1), 
(9.4.3), (9 .4 .12~~ b) and (9 .4 .17~~ b) in Lamb (1980). Substituting u - + u - ~ ~ ~ ( ~ ) ~ ~  into 
(9.3.1) in Lamb (1980), we have 

iu, + A(T) u + uxx + 21u21u = iR(u), 

u = 2p e-ie sech Z, 

z = 2p(X-t), 0 = (n/p)Z+6, 

dZ(R eis sech Z tanh Z) ,  

dZ(R eis sech Z), (14) 
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FIGURE 1 (a-c). For caption see facing page. 
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FIGURE 1. Distribution of dynamic characteristics of the soliton in the parameter plane (F, yJ, where 
number denotes period multiplication and letter C means chaos; 8= 0.07 (0.068 in e).  (a) 
a, = 0.929 mm, 2f = 10.08 Hz; (b) 1.046 mm, 10.08 Hz; (c) 1.046 mm, 10.20 Hz; ( d )  0.905 mm, 
10.20 Hz; (e) 0.902 mm, 9.44 Hz. 

dZ(ReisZsechZ), 

m 

S7 = - h + 2vt7 + 4(v2 -p2 )  - dZR eis sech Z( 1 - Z tanh Z) ,  (16) 

where v, p, < and S are real functions of time 7, and R(u) includes the small coefficient 
c of R(u) in (9.3.1) of Lamb (1980) and should be remembered as being small. 

Comparing (2) with (lo), we suppose (2) to have a soliton solution like (1 l), but the 
soliton is non-propagating, i.e. v and 6 degenerate into zero and a constant, 
respectively, which can be proved by linear analysis if y1 -+ 1 and is expected still to be 
true even if y1 is not small. Thus 

u* = ue2iS(7) 

and (2) becomes (10) with 
(17) 

h(7) = + y(7) cos 28, R(u) = - [a + y(7) sin 281 u. 
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FIGURE 2(u-4. For caption see facing page. 

Substituting (1 8) into (1 3)-( 16) yields, 

p, = - 2[a + 747) sin 261 p, (19) 
6, = - P - ~ ( T ) C O S ~ ~ - ~ ~ ~ ,  (20) 
cr = 0, = 6, = constant. (21) 

The above equations describe a dynamic motion of the single non-propagating soliton 
responding to the excitation in terms of its amplitude p and phase 8. 
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FIGURE 2. Phase portraits (top) and Poincare maps (bottom) of some typical attractors in the phase 
plane @ , p )  for a, = 0.905 mm, 2f = 10.20 Hz, 8 = 0.07 and F = 1.0 Hz: (a)  Single-period limit cycle 
at y1 = 0.560; (b) double-period limit cycle at y, = 0.800; (c) triple-period limit cycle at y1 = 1.140; 
(d )  quadruple-period limit cycle at y1 = 0.960; (e)  sextuple-period limit cycle at y1 = 1.162; (f) 
strange attractor at y1 = 1.050. 

If y = yo = constant, a steady solution is obtained by setting p, = ST = 0 in (19) and 

(22) p = p  = A ( + -  y o  cos 2S$, 
(2% 

o 2  

A linear stability analysis based on (19) and (20) shows that only (23a) is stable, which 
is consistent with the result of (5.5) in Miles (1984). 

The evolution equations (19) and (20) can also be obtained by an alternative 
approach, namely the Krylov-Bogoliubov integral average technique, which is called 
direct perturbation method by Abdullaev (1989). The single non-propagating soliton 
solution of (2) is assumed to be 

u = 2p(7) ePi8(') sech 2p(7) ( X -  6,). 

Substituting this expression into (2), integrating the equation with respect to X and 
equating the real and imaginary parts to zero, we obtain the same as (19) and (20). 

Equations (19) and (20), established approximately with the perturbation method of 
Lamb (1980), hold when the condition of small disturbance, i.e. IR(u)l < O(lul), is 
satisfied. Here we examine it for the case b = 3 cm, d = 2 cm, w = 31.4 rad/s and 
a, = 0.09 cm. If we choose 2 = 0.3 and s= 0.07 (see 53), then yo = a,w2/s2g = 0.3018 
and CL = &/c2 = 0.2333. Even if y1 = 1, R(u) expressed in (18) can be considered to be 
small. At the other extreme y1 = 0, R(u) = 0 for the steady soliton solution. So the 
method is still within its range of validity and can be applied to this problem. 
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FIGURE 3 (a-c). For caption see facing page. 

3. Numerical solution 
We adopt the fourth-order Runge-Kutta finite-difference algorithm to solve (19) 

and (20) numerically. The computer code has been checked by comparing the 
numerical solution with the analytical one, obtained by linearizing (19) and (20) as y1 
is very small. All physical parameters are selected to be consistent with the anticipated 
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FIGURE 3. Experimental results of amplitude-modulated motions of the soliton, where the left-hand 
plot shows wave elevation at the centre of the soliton near either of two sidewalls and the right-hand 
plot shows the amplitude spectrum of the elevation; 2f = 10.20 Hz. (a) Single-period motion at 
a, = 0.925 mm, F = 1.30 Hz, y1 = 0.693; (b) double-period motion at a, = 0.925 mm, F = 1.26 Hz, 
y1 = 0.858; (c) quadruple-period motion at a, = 0.905 111111, I;= 1.07 Hz, y1 = 0.987; (d) sextuple- 
period motion at a, = 1.06 mm, F = 1.62 Hz, y1 = 1.158; (e) chaotic motion at a, = 0.901 mm, 

experiment, i.e. b = 3 cm, d = 2 cm and g = 980 cm s-'. The damping ratio 6is set at 
0.07, a value determined in the Appendix by fitting results of stability analysis to 
experimental data. Calculation parameters are selected suitably: c2 = 0.3 and time step 
AT = 2~/6052. Initial values for p and 6 are given in (22) and (23a) respectively, for all 
calculations in this paper. 

The period-multiplication bifurcation and chaos in the solution of p and 6 are found 
in calculations and identified by trajectories in phase plane @, p )  and PoincarC maps of 
period 27c/Q. The calculated dynamic characteristics of the soliton within the 
investigated parameter range (F, rl) are presented in figure 1 (a-e), corresponding to 
the experimental results in table 1 (a-e) in the next section with the same parameters, 
where 2f and F are basic and modulating frequencies, respectively. Repeated 
bifurcation with period doubling occurs as y1 increases. Also, motions of 3, 6, 5 ,  10 
times the basic period and chaotic motion are observed as well. These typical cases of 
periodic motions (limit cycles or periodic attractors) presented in figure 2(a-e) and 
chaos (strange attractor) in figure 2 (f) are shown as trajectories in phase plane @, p )  

F = 1.1 Hz, y1 = 1.164. 
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and their PoincarC maps. The Poincari maps consist of time sections at 7 = 2xrn/0, 
where m is any integer greater than 100. We can easily recognize the dynamic 
characteristics of the soliton motion from the figures. 

4. Experiment 
The experimental set-up for validating the above theory was similar to that described 

in Wu et al. (1984) or Wei et al. (1990). We used a small Plexiglas rectangular tank of 
19.5 x 3 cm2 filled with water to depth 2 cm. A little soap was added to minimize 
surface pinning at the walls and some cotton was placed at the two ends of the tank 
to eliminate other wave modes and to maintain the non-propagating solitary wave 
under the condition of modulated oscillation. The tank was placed on a platform that 
could execute a vertical periodically amplitude-modulated harmonic oscillation, 

Z = (a, + a, sin 2xFt) cos 4xft, y, = a,/a,, (24) 

where y1 is the modulation ratio, the basic frequency 2f is about 10 Hz and the 
modulation frequency F is within 0.3-2 Hz. A pair of electrodes was inserted vertically 
at the centre of the soliton and near either of two sidewalls to measure the elevation 
of the free surface. The probe responded with a voltage between the electrodes nearly 
proportional to the free-surface elevation. A frequency spectrum analyser of type 
HP3582A was used to record the wave elevation and to obtain its spectrum. 

Four parameters, a,,f, y1 and F, could be controlled. Keeping y1 = 0 and adjusting 
a, andfin the existence range of the soliton (see the Appendix), we could generate a 
steady non-propagating soliton, localized in the longitudinal direction and sloshing at 
frequencyfin the transverse direction. Choosing a suitable F within 0.3 < F < 2 Hz 
and increasing y1 from 0 to 1.5 gradually, we observed that the soliton still existed but 
the amplitude of sloshing was modulated in time. When y, was small, the response 
modulation of the wave occurred at the same period as the driving modulation l /Fand 
there were frequency peaks ff m F  in its spectrum (figure 3 a), where rn = 0, 1,2, . . . . 
Increasing y1 gradually, we found that, instead of at 1/F, the modulation occurred at 
periods 2/F, 4/F and 6 / F  as can be seen in the left-hand plot of figures 3 (b), 3 (c) and 
3(d), respectively. Correspondingly there are peaks a t fk  mF/2,fl  mF/4 andff mF/6 
in the right-hand plot of figures 3 (b), 3 (c) and 3 (d), respectively, which are believed to 
be bifurcations of +, and of the amplitude modulation of the soliton. Bifurcations 
of further smaller fractions were not observed, possibly because their existence range 
was too narrow to be seen or due to the limit of resolving power of the spectrum 
analyser. As y, exceeded a threshold, at certain values the amplitude modulation of the 
soliton was no longer periodic, but chaotic. The wave elevations also oscillated at the 
basic frequencyf, but their modulation never repeated itself and there were many small 
peaks distributed randomly around the main peaks at f and f+ F in the spectrum 
(figure 3 e). The amplitude of the wave in figure 3 (e) stochastically approached zero and 
rose again, which was also found in the numerical prediction (figure 2f). 

The dynamic behaviour of the soliton in the experiment, such as its bifurcation and 
chaos, identified by frequency spectra, is qualitatively consistent with the theoretical 
prediction. Several results for the parametric distribution of the bifurcation and chaos 
are given in table l(a-e) that correspond to the conditions of figure l(a-e), 
respectively. Comparison of experimental and theoretical results shows a quantitative 
agreement. For example, the chaos takes place at about F = 1.1 Hz and y1 = 1.15 in 
table 1 (a), as it does in figure 1 (a) also. In table 1 (e)  and figure 1 (e) chaos occurs in 
similar areas; moreover when y1 exceeds a certain value, no soliton exists but only the 
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(a) 2f = 10.08 Hz and a, = 0.929 mm 

F(Hz) 1.00 1.12 1.32 1.60 2.00 

0.25 1 1 1 I 1 
0.40 1 1 1 1 1 
0.55 1 I 1 1 1 
0.70 2 2 2 2 1 
0.85 2 2 2 2 2 
1.00 2 C 4 2 2 
1.15 C c C 2 2 

( c )  2f = 10.20 Hz and a, = 1.046 mm 

Y1 

(b)  2 f =  10.08 Hz and a, = 1.04 mm 

F ( H z )  1.00 1.16 1.32 1.60 2.00 

0.25 I 1 I 1 1 
0.40 1 1 1 2 1 
0.55 1 2 1 2 2 
0.70 1 2 2 2 2 
0.85 2 2 2 2 2 
1.00 2 2 2 4 2 
1.15 2 C 2 4 2 

( d )  2f= 10.20 Hz and a, = 0.905 mm 

Y1 

F(Hz) 1.00 

0.25 1 
0.40 1 
0.55 1 
0.70 1 
0.85 2 
1.00 2 
1.15 2 

Y1 
1.10 

1 
1 
1 
I 
2 
2 
C 

1.26 1.62 2.00 F(Hz)  0.95 1.00 1.10 1.26 1.58 2.00 

1 1 I 0.25 1 1 1 1 1 1 
1 t 1 0.40 I 1 I I 1 1 
1 2 2 0.55 1 I 1 I 1 1 
2 2 2 0.70 2 2 2 1 1 1 
2 2 2 0 . 8 5 2  2 2 2 1 2  
2 2 2 1 . o o c  C 4 2 1 2  
C 6 2 1.15 C C C 4 1 2 

Y1 

(e) 2f = 9.44 Hz and uo = 0.902 mm 

F(Hz) 0.32 0.40 0.60 0.80 1.00 

0.25 1 1 1 1 I 
0.40 I 1 1 I 1 
0.55 2 1 I 1 1 
0.60 C C I 1 1 
0.70 0 C 2 1 1 
0.85 0 0 2 1 1 
1.00 0 0 C 1 1 

Y1 

TABLE 1. Experimental results for the investigated parameter range ( F ,  y,),  where 1, 2 ,4  and 6 denote 
the factor by which the soliton modulation period is multiplied, C means chaotic solution, and 0 
implies a relatively quiet free surface. 

null solution, i.e. p = 0. We also find in both experiment and calculation that the ranges 
of higher fractional bifurcation, e.g. and { bifurcations, are very small, even smaller 
than the chaotic ones. 

5.  Conclusion 
The chaotic and multiple-periodic amplitude modulations of a non-propagating 

soliton subjected to a periodically modulated oscillation were found theoretically and 
verified experimentally. The theoretical prediction shows not only qualitative 
agreement with the experiment in the general appearance of the soliton, but also 
quantitative agreement in the parameter ranges for the occurrence of the phenomena, 
if the value of the damping ratio for the calculation is chosen as that determined by 
experiment . 
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at the University of Duisburg, Germany. We are grateful to the reviewers for their 
valuable suggestions and to Professor Dr.-Ing. S. D. Sharma of University of Duisburg 
for his help in revising the paper. 

Appendix. Conditions of existence and automatic generation of the steady 
non-propagating soliton 

It was observed by Wu et al. (1984) and more recently by Wei et al. (1990) that the 
single non-propagating soliton can exist stably within a certain parameter range of 
driving frequency and amplitude, while Miles (1 984) gave a necessary theoretical 
condition for the existence of the soliton. In addition to these, we find that there is 
another threshold of driving amplitude, above which the soliton is generated 
automatically without any artificial initial disturbance. The following is our analysis 
and experimental results, which are also essential for determining the damping ratio 6 
or a occurring in (4). 

The evolution equations of the amplitude and phase of the soliton under the 
condition of unmodulated driving are contained in (19) and (20) as the special case 
y = yo = constant. Their steady solutions are, obtained by setting p, = 6, = 0, as 

p1 = f( - p - yo  cos 26,)4, 6 ,  = in  + f arcsin (a/y,,>, (A 1) 

p A -  , p- yo cos 26,);, 6, = - ; arcsin (./yo), (A 2) 
p3 = 0, 6, = - f arccos ( - p/yo), (A 3) 

p4 = 0,  6, = farccos(-P/y,). (A 4) 
We now do a stability analysis of these conditions. Suppose 

Api = p-p,, ASi = &-St ,  

which on substitution into (19) and (20) yields 

- 2(a + yo sin 26,) - 4yo pi cos 26, Ap, 
-8Pt 2yo sin 26, ) ( 

The two eigenvalues of above equations are 

A l , 2  = -a+_(aZ-C)4, (A 7) 

where 

According to the linear analysis theory, the solutions in (A I)-(A 4) are stable only if 
both Re A, < 0 and Re A, < 0. Calculating (A 6) for each solution in (A 1)-(A 4) yields 
that (p2, 6,) and (p4, 6,) are always unstable, (pl,  6,) is stable if 

C = - 47, sin 26,(a + yo sin 2Si) - 32p2yo cos 26,. (A 8) 

yo > a > 0 and -P+(yt-a2); 3 0 (A 9) 

and (p3, 6,) is stable if y i  > p z  and a-(y;-p2)i 3 0. (A 10) 

The stability condition (A 9) is the necessary condition for existence of the soliton. 
It is the same as ( 5 . 7 4  b) of Miles (1984). The stability condition (A 10) is the necessary 
condition for the free surface to remain quiescent. Hence, if 

y; > a2 + p2, (A 11) 

then the condition (A 10) is broken, so the free surface cannot remain still. At the same 
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r 
1.8 . 

Automatic 

0,6 ; Non-existence . . . 
t . ,  . . a .  . .  a , . . . . . . .  * 1 

8.5 9.0 9.5 10.0 10.5 11.0 

2f (H-4 
FIGURE 4. Experimental and theoretical conditions for the existence and automatic generation of the 
steady non-propagating soliton, where lower and upper dots denote the experimental existence and 
automatic generation conditions, respectively, while lower and upper solid lines denote the theoretical 
ones, respectively, for 8= 0.07. 

time, the soliton existence condition (A 9) is satisfied, so a soliton is generated 
automatically under the condition (A 11). 

Measurements at these two conditions of stable existence and automatic generation 
of the soliton were included in our experiments. The results are presented as dots in 
figure 4. Comparing with the theoretical conditions (A 9) and (A 11) for $= 0.07, 
shown as lines in figure 4, we find that the analytical results agree well with the 
measured ones. This also means that the value of Scan be estimated by matching the 
theoretical curves to the experimental data. Here, this gives $= 0.07. 

Conventionally, it is expected that the soliton would exist in a closed domain in the 
parameter plane (ao, 2f) .  So an upper limit for the existence of the soliton could also 
be expected to exist. But from the experiment, it was not as clear as the lower limit and 
theoretical analysis does not yield any upper limit at all. Therefore, it has not been 
drawn in figure 4. 
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